Tuesday, July 7, 2020

Dynamical Top, by James Clerk Maxwell and related books 1

The Project Gutenberg EBook of On a Dynamical Top, by James Clerk Maxwell This eBook is for the use of anyone anywhere in the United States and most other parts of the world at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at If you are not located in the United States, you'll have to check the laws of the country where you are located before using this ebook. Title: On a Dynamical Top Author: James Clerk Maxwell Release Date: June 1, 2002 [EBook #5192] [Most recently updated: March 18, 2020] Language: English Character set encoding: UTF-8 *** START OF THIS PROJECT GUTENBERG EBOOK ON A DYNAMICAL TOP *** Produced by Gordon Keener. On a Dynamical Top, for exhibiting the phenomena of the motion of a system of invariable form about a fixed point, with some suggestions as to the Earth’s motion James Clerk Maxwell [From the Transactions of the Royal Society of Edinburgh, Vol. XXI. Part IV.] (Read 20th April, 1857.) To those who study the progress of exact science, the common spinning-top is a symbol of the labours and the perplexities of men who had successfully threaded the mazes of the planetary motions. The mathematicians of the last age, searching through nature for problems worthy of their analysis, found in this toy of their youth, ample occupation for their highest mathematical powers. No illustration of astronomical precession can be devised more perfect than that presented by a properly balanced top, but yet the motion of rotation has intricacies far exceeding those of the theory of precession. Accordingly, we find Euler and D’Alembert devoting their talent and their patience to the establishment of the laws of the rotation of solid bodies. Lagrange has incorporated his own analysis of the problem with his general treatment of mechanics, and since his time M. Poins├┤t has brought the subject under the power of a more searching analysis than that of the calculus, in which ideas take the place of symbols, and intelligible propositions supersede equations. In the practical department of the subject, we must notice the rotatory machine of Bohnenberger, and the nautical top of Troughton. In the first of these instruments we have the model of the Gyroscope, by which Foucault has been able to render visible the effects of the earth’s rotation. The beautiful experiments by which Mr J. Elliot has made the ideas of precession so familiar to us are performed with a top, similar in some respects to Troughton’s, though not borrowed from his. The top which I have the honour to spin before the Society, differs from that of Mr Elliot in having more adjustments, and in being designed to exhibit far more complicated phenomena. The arrangement of these adjustments, so as to produce the desired effects, depends on the mathematical theory of rotation. The method of exhibiting the motion of the axis of rotation, by means of a coloured disc, is essential to the success of these adjustments. This optical contrivance for rendering visible the nature of the rapid motion of the top, and the practical methods of applying the theory of rotation to such an instrument as the one before us, are the grounds on which I bring my instrument and experiments before the Society as my own. I propose, therefore, in the first place, to give a brief outline of such parts of the theory of rotation as are necessary for the explanation of the phenomena of the top. I shall then describe the instrument with its adjustments, and the effect of each, the mode of observing of the coloured disc when the top is in motion, and the use of the top in illustrating the mathematical theory, with the method of making the different experiments. Lastly, I shall attempt to explain the nature of a possible variation in the earth’s axis due to its figure. This variation, if it exists, must cause a periodic inequality in the latitude of every place on the earth’s surface, going through its period in about eleven months. The amount of variation must be very small, but its character gives it importance, and the necessary observations are already made, and only require reduction. On the Theory of Rotation. The theory of the rotation of a rigid system is strictly deduced from the elementary laws of motion, but the complexity of the motion of the particles of a body freely rotating renders the subject so intricate, that it has never been thoroughly understood by any but the most expert mathematicians. Many who have mastered the lunar theory have come to erroneous conclusions on this subject; and even Newton has chosen to deduce the disturbance of the earth’s axis from his theory of the motion of the nodes of a free orbit, rather than attack the problem of the rotation of a solid body. The method by which M. Poins├┤t has rendered the theory more manageable, is by the liberal introduction of “appropriate ideas,” chiefly of a geometrical character, most of which had been rendered familiar to mathematicians by the writings of Monge, but which then first became illustrations of this branch of dynamics. If any further progress is to be made in simplifying and arranging the theory, it must be by the method which Poins├┤t has repeatedly pointed out as the only one which can lead to a true knowledge of the subject,--that of proceeding from one distinct idea to another instead of trusting to symbols and equations. An important contribution to our stock of appropriate ideas and methods has lately been made by Mr R. B. Hayward, in a paper, “On a Direct Method of estimating Velocities, Accelerations, and all similar quantities, with respect to axes, moveable in any manner in Space.” (Trans. Cambridge Phil. Soc Vol. x. Part I.) * In this communication I intend to confine myself to that part of the subject which the top is intended io illustrate, namely, the alteration of the position of the axis in a body rotating freely about its centre of gravity. I shall, therefore, deduce the theory as briefly as possible, from two considerations only,--the permanence of the original angular momentum in direction and magnitude, and the permanence of the original vis viva. * The mathematical difficulties of the theory of rotation arise chiefly from the want of geometrical illustrations and sensible images, by which we might fix the results of analysis in our minds. It is easy to understand the motion of a body revolving about a fixed axle. Every point in the body describes a circle about the axis, and returns to its original position after each complete revolution. But if the axle itself be in motion, the paths of the different points of the body will no longer be circular or re-entrant. Even the velocity of rotation about the axis requires a careful definition, and the proposition that, in all motion about a fixed point, there is always one line of particles forming an instantaneous axis, is usually given in the form of a very repulsive mass of calculation. Most of these difficulties may be got rid of by devoting a little attention to the mechanics and geometry of the problem before entering on the discussion of the equations. Mr Hayward, in his paper already referred to, has made great use of the mechanical conception of Angular Momentum. Definition 1 The Angular Momentum of a particle about an axis is measured by the product of the mass of the particle, its velocity resolved in the normal plane, and the perpendicular from the axis on the direction of motion. * The angular momentum of any system about an axis is the algebraical sum of the angular momenta of its parts. As the rate of change of the linear momentum of a particle measures the moving force which acts on it, so the rate of change of angular momentum measures the moment of that force about an axis. All actions between the parts of a system, being pairs of equal and opposite forces, produce equal and opposite changes in the angular momentum of those parts. Hence the whole angular momentum of the system is not affected by these actions and re-actions. * When a system of invariable form revolves about an axis, the angular velocity of every part is the same, and the angular momentum about the axis is the product of the angular velocity and the moment of inertia about that axis. * It is only in particular cases, however, that the whole angular momentum can be estimated in this way. In general, the axis of angular momentum differs from the axis of rotation, so that there will be a residual angular momentum about an axis perpendicular to that of rotation, unless that axis has one of three positions, called the principal axes of the body. By referring everything to these three axes, the theory is greatly simplified. The moment of inertia about one of these axes is greater than that about any other axis through the same point, and that about one of the others is a minimum. These two are at right angles, and the third axis is perpendicular to their plane, and is called the mean axis. * Let $A$, $B$, $C$ be the moments of inertia about the principal axes through the centre of gravity, taken in order of magnitude, and let $\omega_1$ $\omega_2$ $\omega_3$ be the angular velocities about them, then the angular momenta will be $A\omega_1$, $B\omega_2$, and $C\omega_3$. Angular momenta may be compounded like forces or velocities, by the law of the “parallelogram,” and since these three are at right angles to each other, their resultant is \begin{displaymath} \sqrt{A^2\omega_1^2 + B^2\omega_2^2 + C^2\omega_3^2} = H \end{displaymath} (1) and this must be constant, both in magnitude and direction in space, since no external forces act on the body. We shall call this axis of angular momentum the invariable axis. It is perpendicular to what has been called the invariable plane. Poins├┤t calls it the axis of the couple of impulsion. The direction-cosines of this axis in the body are, \begin{displaymath} \begin{array}{c c c} \displaystyle l = \frac{A\omega_1}{H}, ... ...ga_2}{H}, & \displaystyle n = \frac{C\omega_3}{H}. \end{array}\end{displaymath} Since $I$, $m$ and $n$ vary during the motion, we need some additional condition to determine the relation between them. We find this in the property of the vis viva of a system of invariable form in which there is no friction. The vis viva of such a system must be constant. We express this in the equation \begin{displaymath} A\omega_1^2 + B\omega_2^2 + C\omega_3^2 = V \end{displaymath} (2) Substituting the values of $\omega_1$, $\omega_2$, $\omega_3$ in terms of $l$, $m$, $n$, \begin{displaymath} \frac{l^2}{A} + \frac{m^2}{B} + \frac{n^2}{C} = \frac{V}{H^2}. \end{displaymath} Let $1/A = a^2$, $1/B = b^2$, $1/c = c^2$, $V/H^2 = e^2$, and this equation becomes \begin{displaymath} a^2l^2 + b^2m^2 + c^2n^2 = e^2 \end{displaymath} (3) and the equation to the cone, described by the invariable axis within the body, is \begin{displaymath} (a^2 - e^2) x^2 + (b^2 - e^2) y^2 + (c^2 - e^2) z^2 = 0 \end{displaymath} (4) The intersections of this cone with planes perpendicular to the principal axes are found by putting $x$, $y$, or $z$, constant in this equation. By giving $e$ various values, all the different paths of the pole of the invariable axis, corresponding to different initial circumstances, may be traced. Figure: Figure 1 * In the figures, I have supposed $a^2 = 100$, $b^2= 107$, and $c^2= 110$. The first figure represents a section of the various cones by a plane perpendicular to the axis of $x$, which is that of greatest moment of inertia. These sections are ellipses having their major axis parallel to the axis of $b$. The value of $e^2$ corresponding to each of these curves is indicated by figures beside the curve. The ellipticity increases with the size of the ellipse, so that the section corresponding to $e^2 = 107$ would be two parallel straight lines (beyond the bounds of the figure), after which the sections would be hyperbolas. Figure: Figure 2 * The second figure represents the sections made by a plane, perpendicular to the mean axis. They are all hyperbolas, except when $e^2 = 107$, when the section is two intersecting straight lines. Figure: Figure 3 The third figure shows the sections perpendicular to the axis of least moment of inertia. From $e^2 = 110$ to $e^2 = 107$ the sections are ellipses, $e^2 = 107$ gives two parallel straight lines, and beyond these the curves are hyperbolas. Figure: Figure 4 * The fourth and fifth figures show the sections of the series of cones made by a cube and a sphere respectively. The use of these figures is to exhibit the connexion between the different curves described about the three principal axes by the invariable axis during the motion of the body. Figure: Figure 5 * We have next to compare the velocity of the invariable axis with respect to the body, with that of the body itself round one of the principal axes. Since the invariable axis is fixed in space, its motion relative to the body must be equal and opposite to that of the portion of the body through which it passes. Now the angular velocity of a portion of the body whose direction-cosines are $l$, $m$, $n$, about the axis of $x$ is \begin{displaymath} \frac{\omega_1}{1 - l^2} - \frac{l}{1 - l^2}(l\omega_1 + m\omega_2 + n\omega-3). \end{displaymath} Substituting the values of $\omega_1$, $\omega_2$, $\omega_3$, in terms of $l$, $m$, $n$, and taking account of equation (3), this expression becomes \begin{displaymath} H\frac{(a^2 - e^2)}{1 - l^2}l. \end{displaymath} Changing the sign and putting $\displaystyle l = \frac{\omega_1}{a^2H}$ we have the angular velocity of the invariable axis about that of $x$ \begin{displaymath} = \frac{\omega_1}{1 - l^2} \frac{e^2 - a^2}{a^2}, \end{displaymath} always positive about the axis of greatest moment, negative about that of least moment, and positive or negative about the mean axis according to the value of $e^2$. The direction of the motion in every case is represented by the arrows in the figures. The arrows on the outside of each figure indicate the direction of rotation of the body. * If we attend to the curve described by the pole of the invariable axis on the sphere in fig. 5, we shall see that the areas described by that point, if projected on the plane of $yz$, are swept out at the rate \begin{displaymath} \omega_1 \frac{e^2 - a^2}{a^2}. \end{displaymath} Now the semi-axes of the projection of the spherical ellipse described by the pole are \begin{displaymath} \sqrt{\frac{e^2 - a^2}{b^2 - a^2}} \hspace{1cm}\textrm{and}\hspace{1cm} \sqrt{\frac{e^2 - a^2}{c^2 - a^2}}. \end{displaymath} Dividing the area of this ellipse by the area described during one revolution of the body, we find the number of revolutions of the body during the description of the ellipse-- \begin{displaymath} = \frac{a^2}{\sqrt{b^2 - a^2}\sqrt{c^2 - a^2}}. \end{displaymath} The projections of the spherical ellipses upon the plane of $yz$ are all similar ellipses, and described in the same number of revolutions; and in each ellipse so projected, the area described in any time is proportional to the number of revolutions of the body about the axis of $x$, so that if we measure time by revolutions of the body, the motion of the projection of the pole of the invariable axis is identical with that of a body acted on by an attractive central force varying directly as the distance. In the case of the hyperbolas in the plane of the greatest and least axis, this force must be supposed repulsive. The dots in the figures 1, 2, 3, are intended to indicate roughly the progress made by the invariable axis during each revolution of the body about the axis of $x$, $y$ and $z$ respectively. It must be remembered that the rotation about these axes varies with their inclination to the invariable axis, so that the angular velocity diminishes as the inclination increases, and therefore the areas in the ellipses above mentioned are not described with uniform velocity in absolute time, but are less rapidly swept out at the extremities of the major axis than at those of the minor. * When two of the axes have equal moments of inertia, or $b = c$, then the angular velocity $\omega_1$ is constant, and the path of the invariable axis is circular, the number of revolutions of the body during one circuit of the invariable axis, being \begin{displaymath} \frac{a^2}{b^2 - a^2} \end{displaymath} The motion is in the same direction as that of the rotation, or in the opposite direction, according as the axis of $x$ is that of greatest or of least moment of inertia. * Both in this case, and in that in which the three axes are unequal, the motion of the invariable axis in the body may be rendered very slow by diminishing the difference of the moments of inertia. The angular velocity of the axis of $x$ about the invariable axis in space is \begin{displaymath} \omega_1\frac{e^2 - a^2l^2}{a^2(1 - l^2)}, \end{displaymath} which is greater or less than $\omega_1$, as $e^2$ is greater or less than $a^2$, and, when these quantities are nearly equal, is very nearly the same as $\omega_1$ itself. This quantity indicates the rate of revolution of the axle of the top about its mean position, and is very easily observed. * The instantaneous axis is not so easily observed. It revolves round the invariable axis in the same time with the axis of $x$, at a distance which is very small in the case when $a$, $b$, $c$, are nearly equal. From its rapid angular motion in space, and its near coincidence with the invariable axis, there is no advantage in studying its motion in the top. * By making the moments of inertia very unequal, and in definite proportion to each other, and by drawing a few strong lines as diameters of the disc, the combination of motions will produce an appearance of epicycloids, which are the result of the continued intersection of the successive positions of these lines, and the cusps of the epicycloids lie in the curve in which the instantaneous axis travels. Some of the figures produced in this way are very pleasing. In order to illustrate the theory of rotation experimentally, we must have a body balanced on its centre of gravity, and capable of having its principal axes and moments of inertia altered in form and position within certain limits. We must be able to make the axle of the instrument the greatest, least, or mean principal axis, or to make it not a principal axis at all, and we must be able to see the position of the invariable axis of rotation at any time. There must be three adjustments to regulate the position of the centre of gravity, three for the magnitudes of the moments of inertia, and three for the directions of the principal axes, nine independent adjustments, which may be distributed as we please among the screws of the instrument. Figure: Figure 6 The form of the body of the instrument which I have found most suitable is that of a bell (fig. 6). $C$ is a hollow cone of brass, $R$ is a heavy ring cast in the same piece. Six screws, with heavy heads, $x$, $y$, $z$, $x'$, $y'$, $z'$, work horizontally in the ring, and three similar screws, $l$, $m$, $n$, work vertically through the ring at equal intervals. $AS$ is the axle of the instrument, $SS$ is a brass screw working in the upper part of the cone $C$, and capable of being firmly clamped by means of the nut $c$. $B$ is a cylindrical brass bob, which may be screwed up or down the axis, and fixed in its place by the nut $b$. The lower extremity of the axle is a fine steel point, finished without emery, and afterwards hardened. It runs in a little agate cup set in the top of the pillar $P$. If any emery had been embedded in the steel, the cup would soon be worn out. The upper end of the axle has also a steel point by which it may be kept steady while spinning. When the instrument is in use, a coloured disc is attached to the upper end of the axle. It will be seen that there are eleven adjustments, nine screws in the brass ring, the axle screwing in the cone, and the bob screwing on the axle. The advantage of the last two adjustments is, that by them large alterations can be made, which are not possible by means of the small screws. The first thing to be done with the instrument is, to make the steel point at the end of the axle coincide with the centre of gravity of the whole. This is done roughly by screwing the axle to the right place nearly, and then balancing the instrument on its point, and screwing the bob and the horizontal screws till the instrument will remain balanced in any position in which it is placed. When this adjustment is carefully made, the rotation of the top has no tendency to shake the steel point in the agate cup, however irregular the motion may appear to be. The next thing to be done, is to make one of the principal axes of the central ellipsoid coincide with the axle of the top. To effect this, we must begin by spinning the top gently about its axle, steadying the upper part with the finger at first. If the axle is already a principal axis the top will continue to revolve about its axle when the finger is removed. If it is not, we observe that the top begins to spin about some other axis, and the axle moves away from the centre of motion and then back to it again, and so on, alternately widening its circles and contracting them. It is impossible to observe this motion successfully, without the aid of the coloured disc placed near the upper end of the axis. This disc is divided into sectors, and strongly coloured, so that each sector may be recognised by its colour when in rapid motion. If the axis about which the top is really revolving, falls within this disc, its position may be ascertained by the colour of the spot at the centre of motion. If the central spot appears red, we know that the invariable axis at that instant passes through the red part of the disc. In this way we can trace the motion of the invariable axis in the revolving body, and we find that the path which it describes upon the disc may be a circle, an ellipse, an hyperbola, or a straight line, according to the arrangement of the instrument. In the case in which the invariable axis coincides at first with the axle of the top, and returns to it after separating from it for a time, its true path is a circle or an ellipse having the axle in its circumference. The true principal axis is at the centre of the closed curve. It must be made to coincide with the axle by adjusting the vertical screws $l$, $m$, $n$. Suppose that the colour of the centre of motion, when farthest from the axle, indicated that the axis of rotation passed through the sector $L$, then the principal axis must also lie in that sector at half the distance from the axle. If this principal axis be that of greatest moment of inertia, we must raise the screw $l$ in order to bring it nearer the axle $A$. If it be the axis of least moment we must lower the screw $l$. In this way we may make the principal axis coincide with the axle. Let us suppose that the principal axis is that of greatest moment of inertia, and that we have made it coincide with the axle of the instrument. Let us also suppose that the moments of inertia about the other axes are equal, and very little less than that about the axle. Let the top be spun about the axle and then receive a disturbance which causes it to spin about some other axis. The instantaneous axis will not remain at rest either in space or in the body. In space it will describe a right cone, completing a revolution in somewhat less than the time of revolution of the top. In the body it will describe another cone of larger angle in a period which is longer as the difference of axes of the body is smaller. The invariable axis will be fixed in space, and describe a cone in the body. The relation of the different motions may be understood from the following illustration. Take a hoop and make it revolve about a stick which remains at rest and touches the inside of the hoop. The section of the stick represents the path of the instantaneous axis in space, the hoop that of the same axis in the body, and the axis of the stick the invariable axis. The point of contact represents the pole of the instantaneous axis itself, travelling many times round the stick before it gets once round the hoop. It is easy to see that the direction in which the hoop moves round the stick, so that if the top be spinning in the direction $L$, $M$, $N$, the colours will appear in the same order. By screwing the bob B up the axle, the difference of the axes of inertia may be diminished, and the time of a complete revolution of the invariable axis in the body increased. By observing the number of revolutions of the top in a complete cycle of colours of the invariable axis, we may determine the ratio of the moments of inertia. By screwing the bob up farther, we may make the axle the principal axis of least moment of inertia. The motion of the instantaneous axis will then be that of the point of contact of the stick with the outside of the hoop rolling on it. The order of colours will be $N$, $M$, $L$, if the top be spinning in the direction $L$, $M$, $N$, and the more the bob is screwed up, the more rapidly will the colours change, till it ceases to be possible to make the observations correctly. In calculating the dimensions of the parts of the instrument, it is necessary to provide for the exhibition of the instrument with its axle either the greatest or the least axis of inertia. The dimensions and weights of the parts of the top which I have found most suitable, are given in a note at the end of this paper. Now let us make the axes of inertia in the plane of the ring unequal. We may do this by screwing the balance screws $x$ and $x^1$ farther from the axle without altering the centre of gravity. Let us suppose the bob $B$ screwed up so as to make the axle the axis of least inertia. Then the mean axis is parallel to $xx^1$, and the greatest is at right angles to $xx^1$ in the horizontal plane. The path of the invariable axis on the disc is no longer a circle but an ellipse, concentric with the disc, and having its major axis parallel to the mean axis $xx^1$. The smaller the difference between the moment of inertia about the axle and about the mean axis, the more eccentric the ellipse will be; and if, by screwing the bob down, the axle be made the mean axis, the path of the invariable axis will be no longer a closed curve, but an hyperbola, so that it will depart altogether from the neighbourhood of the axle. When the top is in this condition it must be spun gently, for it is very difficult to manage it when its motion gets more and more eccentric. When the bob is screwed still farther down, the axle becomes the axis of greatest inertia, and $xx^1$ the least. The major axis of the ellipse described by the invariable axis will now be perpendicular to $xx^1$, and the farther the bob is screwed down, the eccentricity of the ellipse will diminish, and the velocity with which it is described will increase. I have now described all the phenomena presented by a body revolving freely on its centre of gravity. If we wish to trace the motion of the invariable axis by means of the coloured sectors, we must make its motion very slow compared with that of the top. It is necessary, therefore, to make the moments of inertia about the principal axes very nearly equal, and in this case a very small change in the position of any part of the top will greatly derange the position of the principal axis. So that when the top is well adjusted, a single turn of one of the screws of the ring is sufficient to make the axle no longer a principal axis, and to set the true axis at a considerable inclination to the axle of the top. All the adjustments must therefore be most carefully arranged, or we may have the whole apparatus deranged by some eccentricity of spinning. The method of making the principal axis coincide with the axle must be studied and practised, or the first attempt at spinning rapidly may end in the destruction of the top, if not the table on which it is spun. On the Earth’s Motion We must remember that these motions of a body about its centre of gravity, are not illustrations of the theory of the precession of the Equinoxes. Precession can be illustrated by the apparatus, but we must arrange it so that the force of gravity acts the part of the attraction of the sun and moon in producing a force tending to alter the axis of rotation. This is easily done by bringing the centre of gravity of the whole a little below the point on which it spins. The theory of such motions is far more easily comprehended than that which we have been investigating. But the earth is a body whose principal axes are unequal, and from the phenomena of precession we can determine the ratio of the polar and equatorial axes of the “central ellipsoid;” and supposing the earth to have been set in motion about any axis except the principal axis, or to have had its original axis disturbed in any way, its subsequent motion would be that of the top when the bob is a little below the critical position. The axis of angular momentum would have an invariable position in space, and would travel with respect to the earth round the axis of figure with a velocity $\displaystyle = \omega\frac{C - A}{A}$ where $\omega$ is the sidereal angular velocity of the earth. The apparent pole of the earth would travel (with respect to the earth) from west to east round the true pole, completing its circuit in $\displaystyle \frac{A}{C - A}$ sidereal days, which appears to be about 325.6 solar days. The instantaneous axis would revolve about this axis in space in about a day, and would always be in a plane with the true axis of the earth and the axis of angular momentum. The effect of such a motion on the apparent position of a star would be, that its zenith distance should be increased and diminished during a period of 325.6 days. This alteration of zenith distance is the same above and below the pole, so that the polar distance of the star is unaltered. In fact the method of finding the pole of the heavens by observations of stars, gives the pole of the invariable axis, which is altered only by external forces, such as those of the sun and moon. There is therefore no change in the apparent polar distance of stars due to this cause. It is the latitude which varies. The magnitude of this variation cannot be determined by theory. The periodic time of the variation may be found approximately from the known dynamical properties of the earth. The epoch of maximum latitude cannot be found except by observation, but it must be later in proportion to the east longitude of the observatory. In order to determine the existence of such a variation of latitude, I have examined the observations of Polaris with the Greenwich Transit Circle in the years 1851-2-3-4. The observations of the upper transit during each month were collected, and the mean of each month found. The same was done for the lower transits. The difference of zenith distance of upper and lower transit is twice the polar distance of Polaris, and half the sum gives the co-latitude of Greenwich. In this way I found the apparent co-latitude of Greenwich for each month of the four years specified. There appeared a very slight indication of a maximum belonging to the set of months, March, 51. Feb. 52. Dec. 52. Nov. 53. Sept. 54. This result, however, is to be regarded as very doubtful, as there did not appear to be evidence for any variation exceeding half a second of space, and more observations would be required to establish the existence of so small a variation at all. I therefore conclude that the earth has been for a long time revolving about an axis very near to the axis of figure, if not coinciding with it. The cause of this near coincidence is either the original softness of the earth, or the present fluidity of its interior. The axes of the earth are so nearly equal, that a considerable elevation of a tract of country might produce a deviation of the principal axis within the limits of observation, and the only cause which would restore the uniform motion, would be the action of a fluid which would gradually diminish the oscillations of latitude. The permanence of latitude essentially depends on the inequality of the earth’s axes, for if they had been all equal, any alteration of the crust of the earth would have produced new principal axes, and the axis of rotation would travel about those axes, altering the latitudes of all places, and yet not in the least altering the position of the axis of rotation among the stars. Perhaps by a more extensive search and analysis of the observations of different observatories, the nature of the periodic variation of latitude, if it exist, may be determined. I am not aware of any calculations having been made to prove its non-existence, although, on dynamical grounds, we have every reason to look for some very small variation having the periodic time of 325.6 days nearly, a period which is clearly distinguished from any other astronomical cycle, and therefore easily recognised. Note: Dimensions and Weights of the parts of the Dynamical Top. Part Weight lb. oz. I. Body of the top-- Mean diameter of ring, 4 inches. Section of ring, $\frac{1}{3}$ inch square. The conical portion rises from the upper and inner edge of the ring, a height of $1\frac{1}{2}$ inches from the base. The whole body of the top weighs 1 7 Each of the nine adjusting screws has its screw 1 inch long, and the screw and head together weigh 1 ounce. The whole weigh 9 II. Axle, &c.-- Length of axle 5 inches, of which $\frac{1}{2}$ inch at the bottom is occupied by the steel point, $3\frac{1}{2}$ inches are brass with a good screw turned on it, and the remaining inch is of steel, with a sharp point at the top. The whole weighs $1\frac{1}{2}$ The bob $B$ has a diameter of 1.4 inches, and a thickness of .4. It weighs $2\frac{3}{4}$ The nuts $b$ and $c$, for clamping the bob and the body of the top on the axle, each weigh $\frac{1}{2}$ oz. 1 Weight of whole top 2 $5\frac{1}{4}$ The best arrangement, for general observations, is to have the disc of card divided into four quadrants, coloured with vermilion, chrome yellow, emerald green, and ultramarine. These are bright colours, and, if the vermilion is good, they combine into a grayish tint when the rotation is about the axle, and burst into brilliant colours when the axis is disturbed. It is useful to have some concentric circles, drawn with ink, over the colours, and about 12 radii drawn in strong pencil lines. It is easy to distinguish the ink from the pencil lines, as they cross the invariable axis, by their want of lustre. In this way, the path of the invariable axis may be identified with great accuracy, and compared with theory. * 7th May 1857. The paragraphs marked thus have been rewritten since the paper was read. End of the Project Gutenberg EBook of On a Dynamical Top, by James Clerk Maxwell *** END OF THIS PROJECT GUTENBERG EBOOK ON A DYNAMICAL TOP *** ***** This file should be named 5192-h.htm or ***** This and all associated files of various formats will be found in: Produced by Gordon Keener. Updated editions will replace the previous one--the old editions will be renamed. Creating the works from print editions not protected by U.S. copyright law means that no one owns a United States copyright in these works, so the Foundation (and you!) can copy and distribute it in the United States without permission and without paying copyright royalties. Special rules, set forth in the General Terms of Use part of this license, apply to copying and distributing Project Gutenberg-tm electronic works to protect the PROJECT GUTENBERG-tm concept and trademark. Project Gutenberg is a registered trademark, and may not be used if you charge for the eBooks, unless you receive specific permission. If you do not charge anything for copies of this eBook, complying with the rules is very easy. You may use this eBook for nearly any purpose such as creation of derivative works, reports, performances and research. They may be modified and printed and given away--you may do practically ANYTHING in the United States with eBooks not protected by U.S. copyright law. Redistribution is subject to the trademark license, especially commercial redistribution. START: FULL LICENSE THE FULL PROJECT GUTENBERG LICENSE PLEASE READ THIS BEFORE YOU DISTRIBUTE OR USE THIS WORK To protect the Project Gutenberg-tm mission of promoting the free distribution of electronic works, by using or distributing this work (or any other work associated in any way with the phrase "Project Gutenberg"), you agree to comply with all the terms of the Full Project Gutenberg-tm License available with this file or online at Section 1. General Terms of Use and Redistributing Project Gutenberg-tm electronic works 1.A. By reading or using any part of this Project Gutenberg-tm electronic work, you indicate that you have read, understand, agree to and accept all the terms of this license and intellectual property (trademark/copyright) agreement. If you do not agree to abide by all the terms of this agreement, you must cease using and return or destroy all copies of Project Gutenberg-tm electronic works in your possession. If you paid a fee for obtaining a copy of or access to a Project Gutenberg-tm electronic work and you do not agree to be bound by the terms of this agreement, you may obtain a refund from the person or entity to whom you paid the fee as set forth in paragraph 1.E.8. 1.B. "Project Gutenberg" is a registered trademark. It may only be used on or associated in any way with an electronic work by people who agree to be bound by the terms of this agreement. There are a few things that you can do with most Project Gutenberg-tm electronic works even without complying with the full terms of this agreement. See paragraph 1.C below. There are a lot of things you can do with Project Gutenberg-tm electronic works if you follow the terms of this agreement and help preserve free future access to Project Gutenberg-tm electronic works. See paragraph 1.E below. 1.C. The Project Gutenberg Literary Archive Foundation ("the Foundation" or PGLAF), owns a compilation copyright in the collection of Project Gutenberg-tm electronic works. Nearly all the individual works in the collection are in the public domain in the United States. If an individual work is unprotected by copyright law in the United States and you are located in the United States, we do not claim a right to prevent you from copying, distributing, performing, displaying or creating derivative works based on the work as long as all references to Project Gutenberg are removed. Of course, we hope that you will support the Project Gutenberg-tm mission of promoting free access to electronic works by freely sharing Project Gutenberg-tm works in compliance with the terms of this agreement for keeping the Project Gutenberg-tm name associated with the work. You can easily comply with the terms of this agreement by keeping this work in the same format with its attached full Project Gutenberg-tm License when you share it without charge with others. 1.D. The copyright laws of the place where you are located also govern what you can do with this work. Copyright laws in most countries are in a constant state of change. If you are outside the United States, check the laws of your country in addition to the terms of this agreement before downloading, copying, displaying, performing, distributing or creating derivative works based on this work or any other Project Gutenberg-tm work. The Foundation makes no representations concerning the copyright status of any work in any country outside the United States. 1.E. Unless you have removed all references to Project Gutenberg: 1.E.1. The following sentence, with active links to, or other immediate access to, the full Project Gutenberg-tm License must appear prominently whenever any copy of a Project Gutenberg-tm work (any work on which the phrase "Project Gutenberg" appears, or with which the phrase "Project Gutenberg" is associated) is accessed, displayed, performed, viewed, copied or distributed: This eBook is for the use of anyone anywhere in the United States and most other parts of the world at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at If you are not located in the United States, you'll have to check the laws of the country where you are located before using this ebook. 1.E.2. If an individual Project Gutenberg-tm electronic work is derived from texts not protected by U.S. copyright law (does not contain a notice indicating that it is posted with permission of the copyright holder), the work can be copied and distributed to anyone in the United States without paying any fees or charges. If you are redistributing or providing access to a work with the phrase "Project Gutenberg" associated with or appearing on the work, you must comply either with the requirements of paragraphs 1.E.1 through 1.E.7 or obtain permission for the use of the work and the Project Gutenberg-tm trademark as set forth in paragraphs 1.E.8 or 1.E.9. 1.E.3. If an individual Project Gutenberg-tm electronic work is posted with the permission of the copyright holder, your use and distribution must comply with both paragraphs 1.E.1 through 1.E.7 and any additional terms imposed by the copyright holder. Additional terms will be linked to the Project Gutenberg-tm License for all works posted with the permission of the copyright holder found at the beginning of this work. 1.E.4. Do not unlink or detach or remove the full Project Gutenberg-tm License terms from this work, or any files containing a part of this work or any other work associated with Project Gutenberg-tm. 1.E.5. Do not copy, display, perform, distribute or redistribute this electronic work, or any part of this electronic work, without prominently displaying the sentence set forth in paragraph 1.E.1 with active links or immediate access to the full terms of the Project Gutenberg-tm License. 1.E.6. You may convert to and distribute this work in any binary, compressed, marked up, nonproprietary or proprietary form, including any word processing or hypertext form. However, if you provide access to or distribute copies of a Project Gutenberg-tm work in a format other than "Plain Vanilla ASCII" or other format used in the official version posted on the official Project Gutenberg-tm web site (, you must, at no additional cost, fee or expense to the user, provide a copy, a means of exporting a copy, or a means of obtaining a copy upon request, of the work in its original "Plain Vanilla ASCII" or other form. Any alternate format must include the full Project Gutenberg-tm License as specified in paragraph 1.E.1. 1.E.7. Do not charge a fee for access to, viewing, displaying, performing, copying or distributing any Project Gutenberg-tm works unless you comply with paragraph 1.E.8 or 1.E.9. 1.E.8. You may charge a reasonable fee for copies of or providing access to or distributing Project Gutenberg-tm electronic works provided that * You pay a royalty fee of 20% of the gross profits you derive from the use of Project Gutenberg-tm works calculated using the method you already use to calculate your applicable taxes. The fee is owed to the owner of the Project Gutenberg-tm trademark, but he has agreed to donate royalties under this paragraph to the Project Gutenberg Literary Archive Foundation. Royalty payments must be paid within 60 days following each date on which you prepare (or are legally required to prepare) your periodic tax returns. Royalty payments should be clearly marked as such and sent to the Project Gutenberg Literary Archive Foundation at the address specified in Section 4, "Information about donations to the Project Gutenberg Literary Archive Foundation." * You provide a full refund of any money paid by a user who notifies you in writing (or by e-mail) within 30 days of receipt that s/he does not agree to the terms of the full Project Gutenberg-tm License. You must require such a user to return or destroy all copies of the works possessed in a physical medium and discontinue all use of and all access to other copies of Project Gutenberg-tm works. * You provide, in accordance with paragraph 1.F.3, a full refund of any money paid for a work or a replacement copy, if a defect in the electronic work is discovered and reported to you within 90 days of receipt of the work. * You comply with all other terms of this agreement for free distribution of Project Gutenberg-tm works. 1.E.9. If you wish to charge a fee or distribute a Project Gutenberg-tm electronic work or group of works on different terms than are set forth in this agreement, you must obtain permission in writing from both the Project Gutenberg Literary Archive Foundation and The Project Gutenberg Trademark LLC, the owner of the Project Gutenberg-tm trademark. Contact the Foundation as set forth in Section 3 below. 1.F. 1.F.1. Project Gutenberg volunteers and employees expend considerable effort to identify, do copyright research on, transcribe and proofread works not protected by U.S. copyright law in creating the Project Gutenberg-tm collection. Despite these efforts, Project Gutenberg-tm electronic works, and the medium on which they may be stored, may contain "Defects," such as, but not limited to, incomplete, inaccurate or corrupt data, transcription errors, a copyright or other intellectual property infringement, a defective or damaged disk or other medium, a computer virus, or computer codes that damage or cannot be read by your equipment. 1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGES - Except for the "Right of Replacement or Refund" described in paragraph 1.F.3, the Project Gutenberg Literary Archive Foundation, the owner of the Project Gutenberg-tm trademark, and any other party distributing a Project Gutenberg-tm electronic work under this agreement, disclaim all liability to you for damages, costs and expenses, including legal fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE PROVIDED IN PARAGRAPH 1.F.3. YOU AGREE THAT THE FOUNDATION, THE TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH DAMAGE. 1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a defect in this electronic work within 90 days of receiving it, you can receive a refund of the money (if any) you paid for it by sending a written explanation to the person you received the work from. If you received the work on a physical medium, you must return the medium with your written explanation. The person or entity that provided you with the defective work may elect to provide a replacement copy in lieu of a refund. If you received the work electronically, the person or entity providing it to you may choose to give you a second opportunity to receive the work electronically in lieu of a refund. If the second copy is also defective, you may demand a refund in writing without further opportunities to fix the problem. 1.F.4. Except for the limited right of replacement or refund set forth in paragraph 1.F.3, this work is provided to you 'AS-IS', WITH NO OTHER WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE. 1.F.5. Some states do not allow disclaimers of certain implied warranties or the exclusion or limitation of certain types of damages. If any disclaimer or limitation set forth in this agreement violates the law of the state applicable to this agreement, the agreement shall be interpreted to make the maximum disclaimer or limitation permitted by the applicable state law. The invalidity or unenforceability of any provision of this agreement shall not void the remaining provisions. 1.F.6. INDEMNITY - You agree to indemnify and hold the Foundation, the trademark owner, any agent or employee of the Foundation, anyone providing copies of Project Gutenberg-tm electronic works in accordance with this agreement, and any volunteers associated with the production, promotion and distribution of Project Gutenberg-tm electronic works, harmless from all liability, costs and expenses, including legal fees, that arise directly or indirectly from any of the following which you do or cause to occur: (a) distribution of this or any Project Gutenberg-tm work, (b) alteration, modification, or additions or deletions to any Project Gutenberg-tm work, and (c) any Defect you cause. Section 2. Information about the Mission of Project Gutenberg-tm Project Gutenberg-tm is synonymous with the free distribution of electronic works in formats readable by the widest variety of computers including obsolete, old, middle-aged and new computers. It exists because of the efforts of hundreds of volunteers and donations from people in all walks of life. Volunteers and financial support to provide volunteers with the assistance they need are critical to reaching Project Gutenberg-tm's goals and ensuring that the Project Gutenberg-tm collection will remain freely available for generations to come. In 2001, the Project Gutenberg Literary Archive Foundation was created to provide a secure and permanent future for Project Gutenberg-tm and future generations. To learn more about the Project Gutenberg Literary Archive Foundation and how your efforts and donations can help, see Sections 3 and 4 and the Foundation information page at Section 3. Information about the Project Gutenberg Literary Archive Foundation The Project Gutenberg Literary Archive Foundation is a non profit 501(c)(3) educational corporation organized under the laws of the state of Mississippi and granted tax exempt status by the Internal Revenue Service. The Foundation's EIN or federal tax identification number is 64-6221541. Contributions to the Project Gutenberg Literary Archive Foundation are tax deductible to the full extent permitted by U.S. federal laws and your state's laws. The Foundation's principal office is in Fairbanks, Alaska, with the mailing address: PO Box 750175, Fairbanks, AK 99775, but its volunteers and employees are scattered throughout numerous locations. Its business office is located at 809 North 1500 West, Salt Lake City, UT 84116, (801) 596-1887. Email contact links and up to date contact information can be found at the Foundation's web site and official page at For additional contact information: Dr. Gregory B. Newby Chief Executive and Director Section 4. Information about Donations to the Project Gutenberg Literary Archive Foundation Project Gutenberg-tm depends upon and cannot survive without wide spread public support and donations to carry out its mission of increasing the number of public domain and licensed works that can be freely distributed in machine readable form accessible by the widest array of equipment including outdated equipment. Many small donations ($1 to $5,000) are particularly important to maintaining tax exempt status with the IRS. The Foundation is committed to complying with the laws regulating charities and charitable donations in all 50 states of the United States. Compliance requirements are not uniform and it takes a considerable effort, much paperwork and many fees to meet and keep up with these requirements. We do not solicit donations in locations where we have not received written confirmation of compliance. To SEND DONATIONS or determine the status of compliance for any particular state visit While we cannot and do not solicit contributions from states where we have not met the solicitation requirements, we know of no prohibition against accepting unsolicited donations from donors in such states who approach us with offers to donate. International donations are gratefully accepted, but we cannot make any statements concerning tax treatment of donations received from outside the United States. U.S. laws alone swamp our small staff. Please check the Project Gutenberg Web pages for current donation methods and addresses. Donations are accepted in a number of other ways including checks, online payments and credit card donations. To donate, please visit: Section 5. General Information About Project Gutenberg-tm electronic works. Professor Michael S. Hart was the originator of the Project Gutenberg-tm concept of a library of electronic works that could be freely shared with anyone. For forty years, he produced and distributed Project Gutenberg-tm eBooks with only a loose network of volunteer support. Project Gutenberg-tm eBooks are often created from several printed editions, all of which are confirmed as not protected by copyright in the U.S. unless a copyright notice is included. Thus, we do not necessarily keep eBooks in compliance with any particular paper edition. Most people start at our Web site which has the main PG search facility: This Web site includes information about Project Gutenberg-tm, including how to make donations to the Project Gutenberg Literary Archive Foundation, how to help produce our new eBooks, and how to subscribe to our email newsletter to hear about new eBooks. Project Gutenberg's Five of Maxwell's Papers, by James Clerk Maxwell This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at Title: Five of Maxwell's Papers Author: James Clerk Maxwell Posting Date: February 25, 2014 [EBook #4908] Release Date: January, 2004 [This file was first posted on March 24, 2002] Language: English *** START OF THIS PROJECT GUTENBERG EBOOK FIVE OF MAXWELL'S PAPERS *** Produced by Gordon Keener This eBook includes 5 papers or speeches by James Clerk Maxwell. The contents are: Foramen Centrale Theory of Compound Colours Poinsot's Theory Address to the Mathematical Introductory Lecture On the Unequal Sensibility of the Foramen Centrale to Light of different Colours. James Clerk Maxwell [From the Report of the British Association, 1856.] When observing the spectrum formed by looking at a long ve rtical slit through a simple prism, I noticed an elongated dark spot running up and down in the blue, and following the motion of the eye as it moved up and down the spectrum, but refusing to pass out of the blue into the other colours. It was plain that the spot belonged both to the eye and to the blue part of the spectrum. The result to which I have come is, that the appearance is due to the yellow spot on the retina, commonly called the Foramen Centrale of Soemmering. The most convenient method of observing the spot is by presenting to the eye in not too rapid succession, blue and yellow glasses, or, still better, allowing blue and yellow papers to revolve slowly before the eye. In this way the spot is seen in the blue. It fades rapidly, but is renewed every time the yellow comes in to relieve the effect of the blue. By using a Nicol's prism along with this apparatus, the brushes of Haidinger are well seen in connexion with the spot, and the fact of the brushes being the spot analysed by polarized light becomes evident. If we look steadily at an object behind a series of bright bars which move in front of it, we shall see a curious bending of the bars as they come up to the place of the yellow spot. The part which comes over the spot seems to start in advance of the rest of the bar, and this would seem to indicate a greater rapidity of sensation at the yellow spot than in the surrounding retina. But I find the experiment difficult, and I hope for better results from more accurate observers. On the Theory of Compound Colours with reference to Mixtures of Blue and Yellow Light. James Clerk Maxwell [From the Report of the British Association, 1856.] When we mix together blue and yellow paint, we obtain green paint. This fact is well known to all who have handled colours; and it is universally admitted that blue and yellow make green. Red, yellow, and blue, being the primary colours among painters, green is regarded as a secondary colour, arising from the mixture of blue and yellow. Newton, however, found that the green of the spectrum was not the same thing as the mixture of two colours of the spectrum, for such a mixture could be separated by the prism, while the green of the spectrum resisted further decomposition. But still it was believed that yellow and blue would make a green, though not that of the spectrum. As far as I am aware, the first experiment on the subject is that of M. Plateau, who, before 1819, made a disc with alternate sectors of prussian blue and gamboge, and observed that, when spinning, the resultant tint was not green, but a neutral gray, inclining sometimes to yellow or blue, but never to green. Prof. J. D. Forbes of Edinburgh made similar experiments in 1849, with the same result. Prof. Helmholtz of Konigsberg, to whom we owe the most complete investigation on visible colour, has given the true explanation of this phenomenon. The result of mixing two coloured powders is not by any means the same as mixing the beams of light which flow from each separately. In the latter case we receive all the light which comes either from the one powder or the other. In the former, much of the light coming from one powder falls on particles of the other, and we receive only that portion which has escaped absorption by one or other. Thus the light coming from a mixture of blue and yellow powder, consists partly of light coming directly from blue particles or yellow particles, and partly of light acted on by both blue and yellow particles. This latter light is green, since the blue stops the red, yellow, and orange, and the yellow stops the blue and violet. I have made experiments on the mixture of blue and yellow light—by rapid rotation, by combined reflexion and transmission, by viewing them out of focus, in stripes, at a great distance, by throwing the colours of the spectrum on a screen, and by receiving them into the eye directly; and I have arranged a portable apparatus by which any one may see the result of this or any other mixture of the colours of the spectrum. In all these cases blue and yellow do not make green. I have also made experiments on the mixture of coloured powders. Those which I used principally were "mineral blue" (from copper) and "chrome-yellow." Other blue and yellow pigments gave curious results, but it was more difficult to make the mixtures, and the greens were less uniform in tint. The mixtures of these colours were made by weight, and were painted on discs of paper, which were afterwards treated in the manner described in my paper "On Colour as perceived by the Eye," in the Transactions of the Royal Society of Edinburgh, Vol. XXI. Part 2. The visible effect of the colour is estimated in terms of the standard-coloured papers:—vermilion (V), ultramarine (U), and emerald-green (E). The accuracy of the results, and their significance, can be best understood by referring to the paper before mentioned. I shall denote mineral blue by B, and chrome-yellow by Y; and B3 Y5 means a mixture of three parts blue and five parts yellow. Given Colour. Standard Colours. Coefficient V. U. E. of brightness. B8 , 100 = 2 36 7 ………… 45 B7 Y1, 100 = 1 18 17 ………… 37 B6 Y2, 100 = 4 11 34 ………… 49 B5 Y3, 100 = 9 5 40 ………… 54 B4 Y4, 100 = 15 1 40 ………… 56 B3 Y5, 100 = 22 - 2 44 ………… 64 B2 Y6, 100 = 35 -10 51 ………… 76 B1 Y7, 100 = 64 -19 64 ………… 109 Y8, 100 = 180 -27 124 ………… 277 The columns V, U, E give the proportions of the standard colours which are equivalent to 100 of the given colour; and the sum of V, U, E gives a coefficient, which gives a general idea of the brightness. It will be seen that the first admixture of yellow diminishes the brightness of the blue. The negative values of U indicate that a mixture of V, U, and E cannot be made equivalent to the given colour. The experiments from which these results were taken had the negative values transferred to the other side of the equation. They were all made by means of the colour-top, and were verified by repetition at different times. It may be necessary to remark, in conclusion, with reference to the mode of registering visible colours in terms of three arbitrary standard colours, that it proceeds upon that theory of three primary elements in the sensation of colour, which treats the investigation of the laws of visible colour as a branch of human physiology, incapable of being deduced from the laws of light itself, as set forth in physical optics. It takes advantage of the methods of optics to study vision itself; and its appeal is not to physical principles, but to our consciousness of our own sensations. On an Instrument to illustrate Poinsot's Theory of Rotation. James Clerk Maxwell [From the Report of the British Association, 1856.] In studying the rotation of a solid body according to Poinsot's method, we have to consider the successive positions of the instantaneous axis of rotation with reference both to directions fixed in space and axes assumed in the moving body. The paths traced out by the pole of this axis on the invariable plane and on the central ellipsoid form interesting subjects of mathematical investigation. But when we attempt to follow with our eye the motion of a rotating body, we find it difficult to determine through what point of the body the instantaneous axis passes at any time,—and to determine its path must be still more difficult. I have endeavoured to render visible the path of the instantaneous axis, and to vary the circumstances of motion, by means of a top of the same kind as that used by Mr Elliot, to illustrate precession*. The body of the instrument is a hollow cone of wood, rising from a ring, 7 inches in diameter and 1 inch thick. An iron axis, 8 inches long, screws into the vertex of the cone. The lower extremity has a point of hard steel, which rests in an agate cup, and forms the support of the instrument. An iron nut, three ounces in weight, is made to screw on the axis, and to be fixed at any point; and in the wooden ring are screwed four bolts, of three ounces, working horizontally, and four bolts, of one ounce, working vertically. On the upper part of the axis is placed a disc of card, on which are drawn four concentric rings. Each ring is divided into four quadrants, which are coloured red, yellow, green, and blue. The spaces between the rings are white. When the top is in motion, it is easy to see in which quadrant the instantaneous axis is at any moment and the distance between it and the axis of the instrument; and we observe,—1st. That the instantaneous axis travels in a closed curve, and returns to its original position in the body. 2ndly. That by working the vertical bolts, we can make the axis of the instrument the centre of this closed curve. It will then be one of the principal axes of inertia. 3rdly. That, by working the nut on the axis, we can make the order of colours either red, yellow, green, blue, or the reverse. When the order of colours is in the same direction as the rotation, it indicates that the axis of the instrument is that of greatest moment of inertia. 4thly. That if we screw the two pairs of opposite horizontal bolts to different distances from the axis, the path of the instantaneous pole will no longer be equidistant from the axis, but will describe an ellipse, whose longer axis is in the direction of the mean axis of the instrument. 5thly. That if we now make one of the two horizontal axes less and the other greater than the vertical axis, the instantaneous pole will separate from the axis of the instrument, and the axis will incline more and more till the spinning can no longer go on, on account of the obliquity. It is easy to see that, by attending to the laws of motion, we may produce any of the above effects at pleasure, and illustrate many different propositions by means of the same instrument. * Transactions of the Royal Scottish Society of Arts, 1855. Address to the Mathematical and Physical Sections of the British Association. James Clerk Maxwell [From the British Association Report, Vol. XL.] [Liverpool, September 15, 1870.] At several of the recent Meetings of the British Association the varied and important business of the Mathematical and Physical Section has been introduced by an Address, the subject of which has been left to the selection of the President for the time being. The perplexing duty of choosing a subject has not, however, fallen to me. Professor Sylvester, the President of Section A at the Exeter Meeting, gave us a noble vindication of pure mathematics by laying bare, as it were, the very working of the mathematical mind, and setting before us, not the array of symbols and brackets which form the armoury of the mathematician, or the dry results which are only the monuments of his conquests, but the mathematician himself, with all his human faculties directed by his professional sagacity to the pursuit, apprehension, and exhibition of that ideal harmony which he feels to be the root of all knowledge, the fountain of all pleasure, and the condition of all action. The mathematician has, above all things, an eye for symmetry; and Professor Sylvester has not only recognized the symmetry formed by the combination of his own subject with those of the former Presidents, but has pointed out the duties of his successor in the following characteristic note:— "Mr Spottiswoode favoured the Section, in his opening Address, with a combined history of the progress of Mathematics and Physics; Dr. Tyndall's address was virtually on the limits of Physical Philosophy; the one here in print," says Prof. Sylvester, "is an attempted faint adumbration of the nature of Mathematical Science in the abstract. What is wanting (like a fourth sphere resting on three others in contact) to build up the Ideal Pyramid is a discourse on the Relation of the two branches (Mathematics and Physics) to, their action and reaction upon, one another, a magnificent theme, with which it is to be hoped that some future President of Section A will crown the edifice and make the Tetralogy (symbolizable by A+A', A, A', AA') complete." The theme thus distinctly laid down for his successor by our late President is indeed a magnificent one, far too magnificent for any efforts of mine to realize. I have endeavoured to follow Mr Spottiswoode, as with far-reaching vision he distinguishes the systems of science into which phenomena, our knowledge of which is still in the nebulous stage, are growing. I have been carried by the penetrating insight and forcible expression of Dr Tyndall into that sanctuary of minuteness and of power where molecules obey the laws of their existence, clash together in fierce collision, or grapple in yet more fierce embrace, building up in secret the forms of visible things. I have been guided by Prof. Sylvester towards those serene heights "Where never creeps a cloud, or moves a wind, Nor ever falls the least white star of snow, Nor ever lowest roll of thunder moans, Nor sound of human sorrow mounts to mar Their sacred everlasting calm." But who will lead me into that still more hidden and dimmer region where Thought weds Fact, where the mental operation of the mathematician and the physical action of the molecules are seen in their true relation? Does not the way to it pass through the very den of the metaphysician, strewed with the remains of former explorers, and abhorred by every man of science? It would indeed be a foolhardy adventure for me to take up the valuable time of the Section by leading you into those speculations which require, as we know, thousands of years even to shape themselves intelligibly. But we are met as cultivators of mathematics and physics. In our daily work we are led up to questions the same in kind with those of metaphysics; and we approach them, not trusting to the native penetrating power of our own minds, but trained by a long-continued adjustment of our modes of thought to the facts of external nature. As mathematicians, we perform certain mental operations on the symbols of number or of quantity, and, by proceeding step by step from more simple to more complex operations, we are enabled to express the same thing in many different forms. The equivalence of these different forms, though a necessary consequence of self-evident axioms, is not always, to our minds, self-evident; but the mathematician, who by long practice has acquired a familiarity with many of these forms, and has become expert in the processes which lead from one to another, can often transform a perplexing expression into another which explains its meaning in more intelligible language. As students of Physics we observe phenomena under varied circumstances, and endeavour to deduce the laws of their relations. Every natural phenomenon is, to our minds, the result of an infinitely complex system of conditions. What we set ourselves to do is to unravel these conditions, and by viewing the phenomenon in a way which is in itself partial and imperfect, to piece out its features one by one, beginning with that which strikes us first, and thus gradually learning how to look at the whole phenomenon so as to obtain a continually greater degree of clearness and distinctness. In this process, the feature which presents itself most forcibly to the untrained inquirer may not be that which is considered most fundamental by the experienced man of science; for the success of any physical investigation depends on the judicious selection of what is to be observed as of primary importance, combined with a voluntary abstraction of the mind from those features which, however attractive they appear, we are not yet sufficiently advanced in science to investigate with profit. Intellectual processes of this kind have been going on since the first formation of language, and are going on still. No doubt the feature which strikes us first and most forcibly in any phenomenon, is the pleasure or the pain which accompanies it, and the agreeable or disagreeable results which follow after it. A theory of nature from this point of view is embodied in many of our words and phrases, and is by no means extinct even in our deliberate opinions. It was a great step in science when men became convinced that, in order to understand the nature of things, they must begin by asking, not whether a thing is good or bad, noxious or beneficial, but of what kind is it? and how much is there of it? Quality and Quantity were then first recognized as the primary features to be observed in scientific inquiry. As science has been developed, the domain of quantity has everywhere encroached on that of quality, till the process of scientific inquiry seems to have become simply the measurement and registration of quantities, combined with a mathematical discussion of the numbers thus obtained. It is this scientific method of directing our attention to those features of phenomena which may be regarded as quantities which brings physical research under the influence of mathematical reasoning. In the work of the Section we shall have abundant examples of the successful application of this method to the most recent conquests of science; but I wish at present to direct your attention to some of the reciprocal effects of the progress of science on those elementary conceptions which are sometimes thought to be beyond the reach of change. If the skill of the mathematician has enabled the experimentalist to see that the quantities which he has measured are connected by necessary relations, the discoveries of physics have revealed to the mathematician new forms of quantities which he could never have imagined for himself. Of the methods by which the mathematician may make his labours most useful to the student of nature, that which I think is at present most important is the systematic classification of quantities. The quantities which we study in mathematics and physics may be classified in two different ways. The student who wishes to master any particular science must make himself familiar with the various kinds of quantities which belong to that science. When he understands all the relations between these quantities, he regards them as forming a connected system, and he classes the whole system of quantities together as belonging to that particular science. This classification is the most natural from a physical point of view, and it is generally the first in order of time. But when the student has become acquainted with several different sciences, he finds that the mathematical processes and trains of reasoning in one science resemble those in another so much that his knowledge of the one science may be made a most useful help in the study of the other. When he examines into the reason of this, he finds that in the two sciences he has been dealing with systems of quantities, in which the mathematical forms of the relations of the quantities are the same in both systems, though the physical nature of the quantities may be utterly different. He is thus led to recognize a classification of quantities on a new principle, according to which the physical nature of the quantity is subordinated to its mathematical form. This is the point of view which is characteristic of the mathematician; but it stands second to the physical aspect in order of time, because the human mind, in order to conceive of different kinds of quantities, must have them presented to it by nature. I do not here refer to the fact that all quantities, as such, are subject to the rules of arithmetic and algebra, and are therefore capable of being submitted to those dry calculations which represent, to so many minds, their only idea of mathematics. The human mind is seldom satisfied, and is certainly never exercising its highest functions, when it is doing the work of a calculating machine. What the man of science, whether he is a mathematician or a physical inquirer, aims at is, to acquire and develope clear ideas of the things he deals with. For this purpose he is willing to enter on long calculations, and to be for a season a calculating machine, if he can only at last make his ideas clearer. But if he finds that clear ideas are not to be obtained by means of processes the steps of which he is sure to forget before he has reached the conclusion, it is much better that he should turn to another method, and try to understand the subject by means of well-chosen illustrations derived from subjects with which he is more familiar. We all know how much more popular the illustrative method of exposition is found, than that in which bare processes of reasoning and calculation form the principal subject of discourse. Now a truly scientific illustration is a method to enable the mind to grasp some conception or law in one branch of science, by placing before it a conception or a law in a different branch of science, and directing the mind to lay hold of that mathematical form which is common to the corresponding ideas in the two sciences, leaving out of account for the present the difference between the physical nature of the real phenomena. The correctness of such an illustration depends on whether the two systems of ideas which are compared together are really analogous in form, or whether, in other words, the corresponding physical quantities really belong to the same mathematical class. When this condition is fulfilled, the illustration is not only convenient for teaching science in a pleasant and easy manner, but the recognition of the formal analogy between the two systems of ideas leads to a knowledge of both, more profound than could be obtained by studying each system separately. There are men who, when any relation or law, however complex, is put before them in a symbolical form, can grasp its full meaning as a relation among abstract quantities. Such men sometimes treat with indifference the further statement that quantities actually exist in nature which fulfil this relation. The mental image of the concrete reality seems rather to disturb than to assist their contemplations. But the great majority of mankind are utterly unable, without long training, to retain in their minds the unembodied symbols of the pure mathematician, so that, if science is ever to become popular, and yet remain scientific, it must be by a profound study and a copious application of those principles of the mathematical classification of quantities which, as we have seen, lie at the root of every truly scientific illustration. There are, as I have said, some minds which can go on contemplating with satisfaction pure quantities presented to the eye by symbols, and to the mind in a form which none but mathematicians can conceive. There are others who feel more enjoyment in following geometrical forms, which they draw on paper, or build up in the empty space before them. Others, again, are not content unless they can project their whole physical energies into the scene which they conjure up. They learn at what a rate the planets rush through space, and they experience a delightful feeling of exhilaration. They calculate the forces with which the heavenly bodies pull at one another, and they feel their own muscles straining with the effort. To such men momentum, energy, mass are not mere abstract expressions of the results of scientific inquiry. They are words of power, which stir their souls like the memories of childhood. For the sake of persons of these different types, scientific truth should be presented in different forms, and should be regarded as equally scientific whether it appears in the robust form and the vivid colouring of a physical illustration, or in the tenuity and paleness of a symbolical expression. Time would fail me if I were to attempt to illustrate by examples the scientific value of the classification of quantities. I shall only mention the name of that important class of magnitudes having direction in space which Hamilton has called vectors, and which form the subject-matter of the Calculus of Quaternions, a branch of mathematics which, when it shall have been thoroughly understood by men of the illustrative type, and clothed by them with physical imagery, will become, perhaps under some new name, a most powerful method of communicating truly scientific knowledge to persons apparently devoid of the calculating spirit. The mutual action and reaction between the different departments of human thought is so interesting to the student of scientific progress, that, at the risk of still further encroaching on the valuable time of the Section, I shall say a few words on a branch of physics which not very long ago would have been considered rather a branch of metaphysics. I mean the atomic theory, or, as it is now called, the molecular theory of the constitution of bodies. Not many years ago if we had been asked in what regions of physical science the advance of discovery was least apparent, we should have pointed to the hopelessly distant fixed stars on the one hand, and to the inscrutable delicacy of the texture of material bodies on the other. Indeed, if we are to regard Comte as in any degree representing the scientific opinion of his time, the research into what takes place beyond our own solar system seemed then to be exceedingly unpromising, if not altogether illusory. The opinion that the bodies which we see and handle, which we can set in motion or leave at rest, which we can break in pieces and destroy, are composed of smaller bodies which we cannot see or handle, which are always in motion, and which can neither be stopped nor broken in pieces, nor in any way destroyed or deprived of the least of their properties, was known by the name of the Atomic theory. It was associated with the names of Democritus, Epicurus, and Lucretius, and was commonly supposed to admit the existence only of atoms and void, to the exclusion of any other basis of things from the universe. In many physical reasonings and mathematical calculations we are accustomed to argue as if such substances as air, water, or metal, which appear to our senses uniform and continuous, were strictly and mathematically uniform and continuous. We know that we can divide a pint of water into many millions of portions, each of which is as fully endowed with all the properties of water as the whole pint was; and it seems only natural to conclude that we might go on subdividing the water for ever, just as we can never come to a limit in subdividing the space in which it is contained. We have heard how Faraday divided a grain of gold into an inconceivable number of separate particles, and we may see Dr Tyndall produce from a mere suspicion of nitrite of butyle an immense cloud, the minute visible portion of which is still cloud, and therefore must contain many molecules of nitrite of butyle. But evidence from different and independent sources is now crowding in upon us which compels us to admit that if we could push the process of subdivision still further we should come to a limit, because each portion would then contain only one molecule, an individual body, one and indivisible, unalterable by any power in nature. Even in our ordinary experiments on very finely divided matter we find that the substance is beginning to lose the properties which it exhibits when in a large mass, and that effects depending on the individual action of molecules are beginning to become prominent. The study of these phenomena is at present the path which leads to the development of molecular science. That superficial tension of liquids which is called capillary attraction is one of these phenomena. Another important class of phenomena are those which are due to that motion of agitation by which the molecules of a liquid or gas are continually working their way from one place to another, and continually changing their course, like people hustled in a crowd. On this depends the rate of diffusion of gases and liquids through each other, to the study of which, as one of the keys of molecular science, that unwearied inquirer into nature's secrets, the late Prof. Graham, devoted such arduous labour. The rate of electrolytic conduction is, according to Wiedemann's theory, influenced by the same cause; and the conduction of heat in fluids depends probably on the same kind of action. In the case of gases, a molecular theory has been developed by Clausius and others, capable of mathematical treatment, and subjected to experimental investigation; and by this theory nearly every known mechanical property of gases has been explained on dynamical principles; so that the properties of individual gaseous molecules are in a fair way to become objects of scientific research. Now Mr Stoney has pointed out[1] that the numerical results of experiments on gases render it probable that the mean distance of their particles at the ordinary temperature and pressure is a quantity of the same order of magnitude as a millionth of a millimetre, and Sir William Thomson has since[2] shewn, by several independent lines of argument, drawn from phenomena so different in themselves as the electrification of metals by contact, the tension of soap-bubbles, and the friction of air, that in ordinary solids and liquids the average distance between contiguous molecules is less than the hundred-millionth, and greater than the two-thousand-millionth of a centimetre. [1] Phil. Mag., Aug. 1868. [2] Nature, March 31, 1870.


Post a Comment